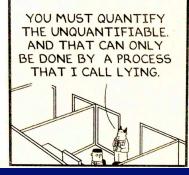
FMRI Data Modeling, the <u>General Linear Model</u>, and Statistical Inference

Robert W Cox, PhD sscc/nimh/nih/dhhs/usa/earth

http://afni.nimh.nih.gov/pub/tmp/ISMRM2007/

fMRI: Basics to Cutting Edge - ISMRM 2007 - Berlin - 19 May 2007

The Sub-Text for PowerPoint



N.B.: I have plenty of slides!

Assumptions about You

- You sort-of-know a little about how FMRI works
 - e.g., You've paid attention today?
- You want to sort-of-know a little about mathematics of FMRI analysis
 - So you can read papers?
 - So you can judge how appropriate an analysis method is for your work?
 - So you can start hacking out code?

Caveats

- Almost everything herein has an exception or complication, or both
- Special types of data or stimuli may require special analysis steps
 - e.g., perfusion-weighted FMRI
- Special types of questions often require special data and analyses
 - e.g., relative timing of neural events

Outline

- Signal Modeling Principles
 - e.g., generic ranting
- Temporal Models of Activation
 - e.g., convolution
- Noise Models & Statistics
 - e.g., prewhitening, resampling
- Spatial Models of Activation
 - e.g., clustering, smoothing, ROIs

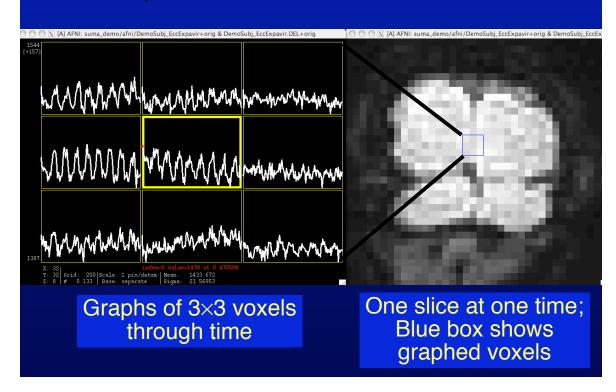
Signal Modeling Principles

- Develop a mathematical model relating what we <u>know</u> (stimulus timing and image data) to what we <u>want to know</u> (location, amount, timing, etc, of neural activity)
- Given data, use this model to solve for unknown parameters in the neural activity (e.g., when, where, how much, etc)
 - Then test for statistical significance

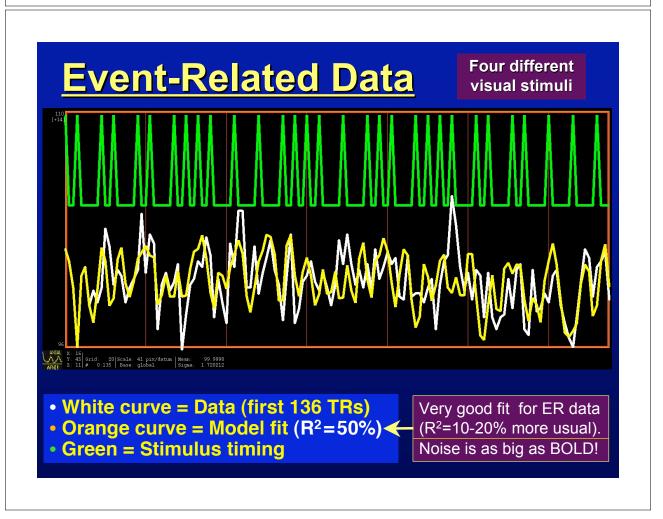
The Data

- 10,000..50,000 image voxels inside brain (resolution ≈ 2-3 mm)
- 100..1000+ time points in each voxel (time step ≈ 2 s)
- Also know timing of stimuli delivered to subject (etc)
 - Behavioral, physiological data?
- Hopefully, some hypothesis

Sample Data: Visual Area V1



Same Data as Last Slide 1497. 4 [+110.4] This is really good data; N.B.: repetitions differ X: 32 index=118 value=1387 at 236.4706 Y: 32 Grid: 200 Scale: 2.5 pix/datum Mean: 1433.672 Y: 32 Grid: 200 Scale: 2.5 pix/datum Mean: 21.56953 Blowup of central time series graph: about 7% signal change with a very powerful periodic neural stimulus Block design experimental paradigm: visual stimulus



Why FMRI Analysis Is Hard

- Don't know true relation between neural "activity" and BOLD signal:
 - What is neural "activity", anyway?
 - What is connection between "activity" and hemodynamics and MRI signal?
- Noise in data is poorly characterized
 - In space and in time, and in origin
 - Noise amplitude ≥ BOLD signal
 - Can some of this noise be removed?
 - Makes both signal detection and statistical assessment hard

Why So Many Methods?

- Different assumptions about activity-to-MRI signal connection
- Different assumptions about noise (= signal fluctuations of no interest) properties and statistics
- Different experiments and questions
- Result:
 But:
 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

 But:

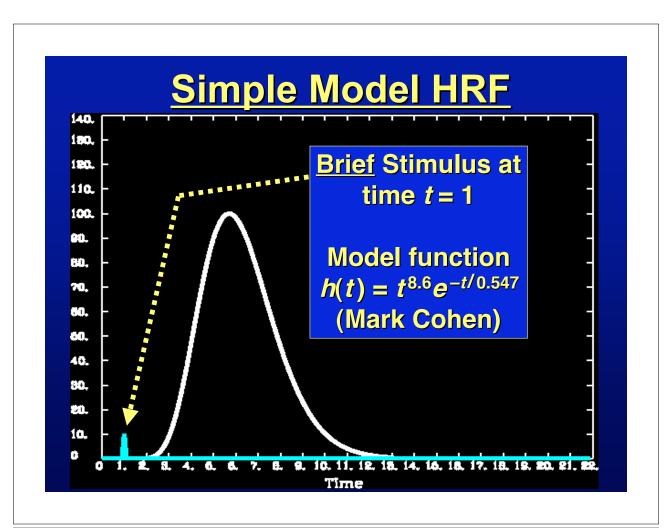
 But:
- Researchers <u>must</u> understand the tools!! (Models and software)

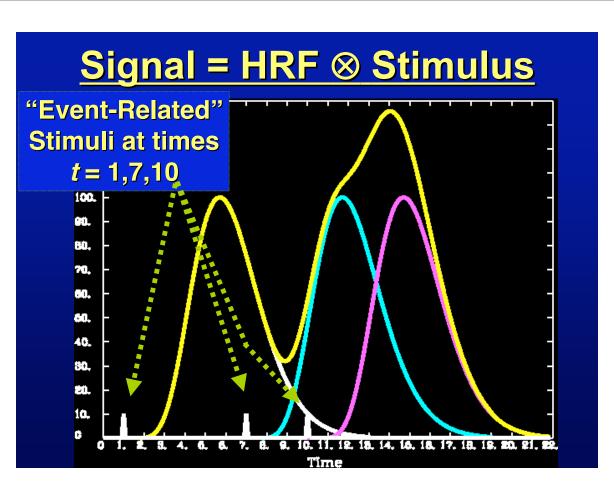
Fundamental Principles Underlying Most FMRI Analyses (esp. GLM): HRF \otimes Blobs

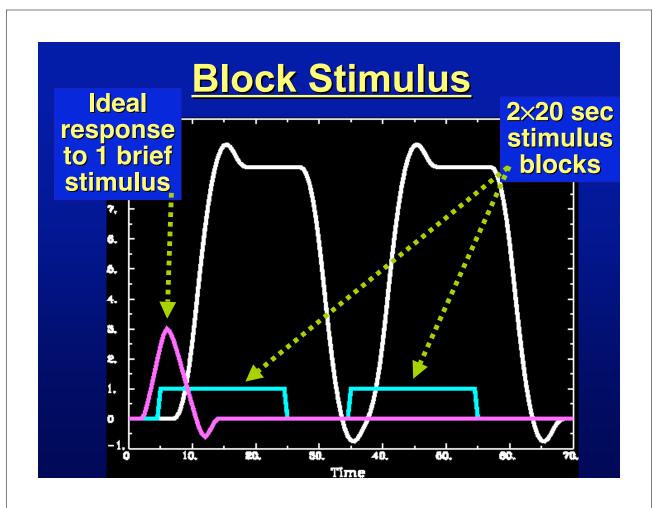
- Hemodynamic Response Function
 - Convolution model for temporal relation between stimulus and response
- Activation Blobs
 - Contiguous spatial regions whose voxel time series fit HRF model
 - e.g., Reject isolated voxels even if HRF model fit is good there

Temporal Models: Linear Convolution

- Additivity Assumption:
 - Input = 2 separated-in-time activations
 - Output = separated-in-time sum of 2 copies of the 1-stimulus response
- FMRI response to single stimulus is called the <u>Hemodynamic Response</u> Function (HRF)
 - Also: Impulse Response Function (IRF)







Some (incomplete) Signal Models

One stimulus class: stimuli occur at times τ_s

$$Z(t) = \underbrace{\beta_0 + \beta_1 \cdot t}_{\text{baseline model}} + \sum_{s=1}^{N_s} h(t - \tau_s) + \varepsilon(t)$$

• One stimulus class:

stimulus/activity occurs in 2 separated phases

Stimulus time

$$Z(t) = \beta_0 + \beta_1 \cdot t + \sum_{s=1}^{N_s} \left[h_1(t - \tau_s) + h_2(t - (\tau_s + \delta_s)) \right] + \varepsilon(t)$$

 Models must be adjusted to particular experimental design

Delay between phases

Fixed Shape HRF Analysis

- Assume some shape for HRF=h(t)
- Signal model is $r(t) = h(t) \otimes Stimulus$ = "Convolution" of HRF with neural activity timing function (e.g., stimulus)
- Model for each voxel data time series:
 Z(t) = a·r(t) + b + noise(t)
- Estimate unknowns: a = amplitude,
 b=baseline, σ² = noise variance
- Significance of a ≠ 0 ⇒ activation map

Variable Shape HRF Analysis

- Allow shape of HRF to be unknown, as well as amplitude (deconvolution)
- Good: Analysis adapts to each subject and each voxel
- Good: Can compare brain regions based on HRF shapes
 - e.g., early vs. late response?
- Bad: Must estimate more parameters
 - → Need more data (all else being equal)

Aside: Baseline Model

- Need to model a slowly drifting baseline, since the signal from people fluctuates on time scale of 100 s or so
 - Mostly due to tiny movements?
 - Scanner fluctuations can also occur
- Usual method: include low frequency expansion in signal model ("highpass filtering"): $Z(t) = \sum_{p=1}^{N_b} \beta_p \cos(\frac{2\pi t}{N \cdot TR}) + \cdots$

HRF Model Equations

$$h(t) = a \cdot t^b e^{-t/c}$$
 Simplest model: fixed shape Unknown = $a \cdot [b \cdot c]$ fixed]

$$h(t) = a_0 \cdot t^b e^{-t/c} + a_1 \cdot \frac{d}{dt} \left[t^b e^{-t/c} \right]$$

Next simplest model: derivative allows for time shift Unknowns = a_0 and a_1 [b & c fixed]

$$h(t) = \sum_{q=1}^{Q} w_q \Phi_q(t)$$
 Expansion in a set of fixed basis functions $\{\Phi_q(t)\}$ (e.g., Splines, sines, ...); Unknowns = $\{w_q\}$

Multiple Stimulus Classes

- Need to calculate HRF (amplitude or amplitude+shape) separately for each class of stimulus
- Novice FMRI researcher pitfall: try to use too many stimulus classes
- Event-related FMRI: need 20+ events per stimulus class
- Block design FMRI: need 10+ blocks per stimulus class

Combined Signal Model

$$Z(t) = \beta_0 + \beta_1 \cdot t + \sum_{s=1}^{N_s} h(t - \tau_s) + \varepsilon(t)$$

$$= \beta_0 + \beta_1 \cdot t + \sum_{s=1}^{N_s} \left[\sum_{q=1}^{Q} w_q \Phi_q(t - \tau_s) \right] + \varepsilon(t)$$
HRF model
$$= \beta_0 + \beta_1 \cdot t + \sum_{q=1}^{Q} \left[\sum_{s=1}^{N_s} \Phi_q(t - \tau_s) \right] \cdot w_q + \varepsilon(t)$$
Reorder sums

• Result: equation for unknowns $\{\beta_0, \beta_1, w_q\}$ in terms of data Z(t)

Matrix-Vector Formulation

Usually write equation in form:

$$\begin{bmatrix} Z_0 \\ Z_1 \\ Z_2 \\ \vdots \\ Z_{N-1} \end{bmatrix} = \begin{bmatrix} R_{00} & R_{01} & R_{02} & \cdots & R_{0,Q+1} \\ R_{10} & R_{11} & R_{12} & \cdots & R_{1,Q+1} \\ R_{20} & R_{21} & R_{22} & \cdots & R_{2,Q+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{N-1,0} & R_{N-1,1} & R_{N-1,2} & \cdots & R_{N-1,Q+1} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ w_1 \\ \vdots \\ w_Q \end{bmatrix} + \begin{bmatrix} \varepsilon_0 \\ \varepsilon_1 \\ w_1 \\ \vdots \\ w_Q \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ A_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ B_1 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

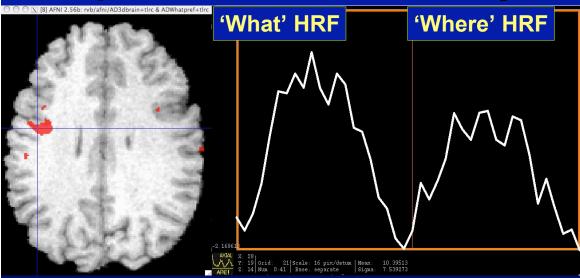
$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

$$\begin{bmatrix} A_0 \\ C_1 \\ C_2 \\ \vdots \\ C_{N-1} \end{bmatrix}$$

In matrix-vector notation:

$$z = R\beta + \varepsilon$$

 $z=R\beta+\varepsilon$ Each column of R is a time series basis function, and each element of β is its amplitude in z



- 'What'-vs-'Where' tactile stimulation
- Red ⇒ regions with What > Where

Data from R van Boven: 1040 time points; 30 stimuli in each class

(Linear) Inverse Modeling

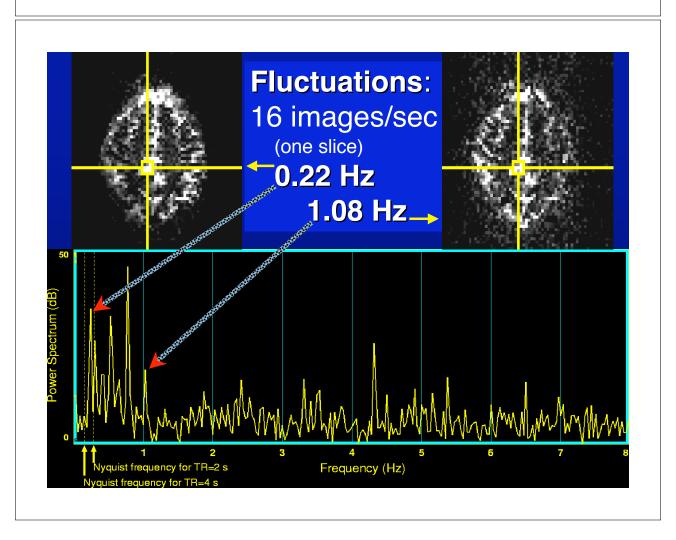
- Instead of using stimulus timing to get HRF, could use an assumed HRF to get activity timing per voxel
- <u>Or</u> could use an assumed spatial response (from a training/calibration run?) to extract stimulus timing
 - e.g., HBM 2006 Movie contest
- Linear equations, <u>but</u> have swapped roles of unknowns & knowns

Noise Models & Statistics

- Physiological "noise"
 - Heartbeat and respiration affect signal in complex ways
- Subject head movement
 - After realignment, some effects remain
- Low frequency drifts (≤ 0.01 Hz)
- Scanner glitches can produce gigantic (≥10 σ) spikes in data

Physiological "Noise"

- MRI signal changes due to nonneural physiology during scan
- Can be approximately filtered out with external measurements
 - e.g., respiratory bellows, pulse oximeter
 - Somewhat harder than it sounds, and is not commonly used (yet)



Regression Methods

Solving this equation approximately:

$$\mathbf{z} = \mathbf{R}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
R is NxM matrix
 $\mathbf{z} \& \boldsymbol{\varepsilon}$ are N-vectors
 $\boldsymbol{\beta}$ is M-vector (M<

- What method to use to solve for <a>B?
 - Can allow for statistics of E in solution method
 - Should allow for statistics of *E* in solution statistics
 - Neither of these points are trivial, fullyresolved issues

Regression Methods I

- Ordinary least squares: $\hat{\beta} = [\mathbf{R}^T \mathbf{R}]^{-1} \mathbf{R}^T \mathbf{z}$
 - Derivable under assumption that \mathcal{E} has $\mathcal{N}(0)$, σ²I) distribution (Gaussian white noise)
 - Pro: simple, standard, robust
 - Con: not as statistically powerful as possible
- Prewhitened least sqrs: $\hat{\beta} = [\mathbf{R}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{R}]^{-1} \mathbf{R}^{\mathsf{T}} \mathbf{C}^{-1} \mathbf{z}$
 - Derivable under assumption that E has $\mathcal{N}(0,\mathbb{C})$ distribution (\mathbb{C} = covariance matrix)
 - Pro: as statistically powerful as possible given the assumptions
 - Con: sensitive to estimation of C

Regression Methods II

- Projected least squares: $\hat{\beta} = [\mathbf{R}^{\mathsf{T}}\mathbf{P}\mathbf{R}]^{-1}\mathbf{R}^{\mathsf{T}}\mathbf{P}\mathbf{z}$
 - P = projection matrix, onto "acceptable" subspace of data
 - **Pro**: can remove à *priori* unwanted components from data (*e.g.*, low and high frequencies)
- L¹ regression: $\hat{\boldsymbol{\beta}} = \arg\min \sum_{i=0}^{N-1} |(\mathbf{R}\boldsymbol{\beta} \mathbf{z})_i|$
 - Pro: robust against non-Gaussianity in
 - Con: harder to estimate significance of β
 analytically; temporal correlation is also harder to handle

Inference on **B**

- $\hat{\beta}$ contains the results about the HRF
- Can test individual elements in β or collections of elements for significant difference from zero ("activation")
 - e.g., "was there a response to stimulus A?"
- Can test differences between elements or collections of elements
 - e.g., "was response to A different from B?"
- Tests usually expressed as *t* or *F* statistic

Estimating Serial Correlation

- Can assume some model correlation structure; e.g., AR(n) autoregressive models
 - Advantage is simplicity, not reality
- Can try to estimate C directly
 - Possibly using neighboring voxels as well
 - Or smooth estimates of C (or some of the parameters in C) locally
 - Usually start with OLS to estimate and subtract "signal", then estimate C from residuals

Adapting to Correlated Noise

- Can adjust degrees-of-freedom in OLS estimates of parameters to approximate for correlation
 - Including correlation induced by projection via bandpass filters
- If "properly" done, prewhitened LS will give full degrees-of-freedom with no semi-ad hoc adjustments required
 - Results can be sensitive to errors in C

Avoiding Some Assumptions

- <u>All</u> statistical methods require assumptions about noise
 - Gaussianity, independence, ...
- Can use modern statistical resampling/permutation methods to reduce the number of assumptions
- Very computationally intensive
 - Substituting number crunching for mathematical theory

Spatial Models of Activation

- 10,000..50,000 image voxels in brain
- Don't really expect activation in a single voxel (usually)
- Curse of multiple comparisons:
 - If have 10,000 statistical tests to perform, and 5% give false positive, would have 500 voxels "activated" by pure noise — way way too much!
- Can group voxels together somehow to manage this curse

Spatial Grouping Methods

- Smooth data in space before analysis
- Average data across anatomicallyselected regions of interest ROI (before or after analysis)
 - Labor intensive (i.e., send more postdocs)
- Reject isolated small clusters of above-threshold voxels after analysis

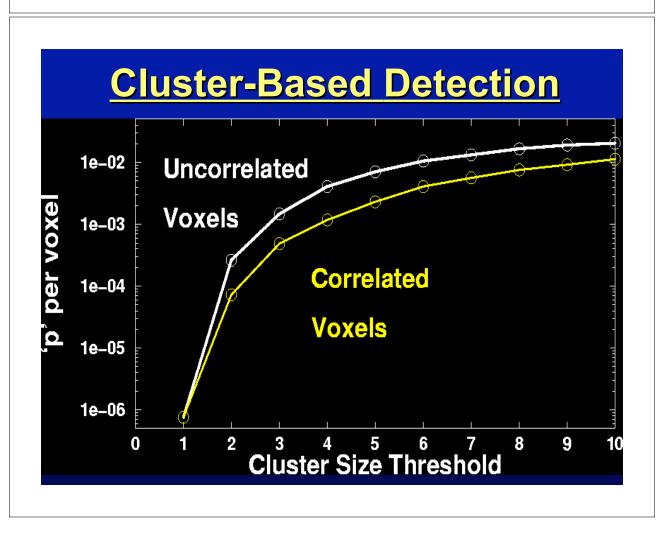
Spatial Smoothing of Data

Good things

- Reduces number of comparisons
- Reduces noise (by averaging)
- Reduces spatial resolution
 - Can make FMRI results look PET-ish
 - In that case, why bother gathering high resolution MR images?
- Smart smoothing: average only over nearby brain or gray matter voxels
 - Uses resolution of FMRI cleverly
 - Or: average over selected ROIs
 - Or: cortical surface based smoothing

Spatial Clustering

- Analyze data, create statistical map (e.g., t statistic in each voxel)
- Threshold map at a lowish t value, in each voxel separately
- Threshold map by rejecting clusters of voxels below a given size
- Can control false-positive rate by adjusting threshold and clustersize thresholds together



What the World Needs Now

- Unified HRF/Deconvolution ⊕ Blob analysis
- Time

 Space patterns computed all at once, instead of via arbitrary spatial smoothing
 - Increase statistical power by using data from multiple voxels cleverly
 - <u>Instead of</u> time analysis followed by spatial analysis (described earlier)
 - <u>Instead of</u> component-style analyses (e.g., ICA) that do not use stimulus timing or other known info
 - Must be grounded in realistic brain+signal models
- Difficulty: models for spatial blobs
 - Little information à priori ⇒ must be adaptive

Inter-Subject Analyses

- Bring brains into alignment somehow
- Perform statistical analysis on activation amplitudes $\hat{\beta}$
 - e.g., ANOVA of various flavors
- Can be cast as a similar regression problem, with "data" = $\frac{\hat{\beta}}{\beta}$
- Not yet tried much: analyze all subjects' time series together at once in one <u>humungous</u> regression

Summary and Conclusion

- FMRI data contain features that are about the same size as the BOLD signal and are poorly understood
- Thus: There are many "reasonable" ways to analyze FMRI data
 - Depending on the assumptions about the brain, the signal, and the noise
- Conclusions: Understand what you are doing & Look at your data
 - Or you will do something stupid

Finally ... Thanks

 The list of people I should thank is not quite endless ...

MM Klosek. JS Hyde. JR Binder. EA DeYoe. SM Rao.
EA Stein. A Jesmanowicz. MS Beauchamp. BD Ward.
KM Donahue. PA Bandettini. AS Bloom. T Ross.
M Huerta. ZS Saad. K Ropella. B Knutson. J Bobholz.
G Chen. RM Birn. J Ratke. PSF Bellgowan. J Frost.
K Bove-Bettis. R Doucette. RC Reynolds. PP Christidis.
LR Frank. R Desimone. L Ungerleider. KR Hammett.
DS Cohen. DA Jacobson. EC Wong. D Glen.

http://afni.nimh.nih.gov/pub/tmp/ISMRM2007/

Et alii ...